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1. Introduction

Modern advances in technology require improving avail-
able and developing and implementing new methods and
procedures that make it possible to preserve material, labor,
energy and environmental resources. In the metalworking
industry, resource-saving is ensured by introducing a wide
range of methods of cold volumetric stamping, which help in-
crease the mechanical properties of the deformed metal and
obtain products with great precision and the necessary tech-
nological properties. There are possibilities to form products
with work-conducive macrostructures, strain hardening and
the permissible level of deformed metal damage, which often
allows replacing expensive grades of steels with cheaper ones
without changing the service properties of the products.

However, the methods of theoretical solution of volumet-
ric problems, especially in the presence of non-monotonic
loading, have not been improved enough for practical use in
the development and optimization of technologies. To meet
the more stringent requirements for the accuracy of determin-
ing the stress-strain state, it is necessary to have information
about the history of the process of plastic deformation at each
point of the metal. This will allow predicting the mechanical
properties of and the level of damage to the deformed metal.

The presence of non-monotonic loading considerably
complicates the calculations of stresses and limiting de-
formations. Therefore, the development of more advanced
methods for calculating the stress-strain state and esti-

mating the deformability of workpieces for cold volume
stamping under conditions of non-monotonic loading is an
essential scientific and technical task.

2. Literature review and problem statement

In the field of metal forming, there are many unresolved
problems associated with the evaluation of the ultimate
shaping of workpieces in non-monotonic plastic deformation
processes. Workpieces of the desired accuracy in shape and
size can be obtained in one transition or, due to the plastici-
ty resource depletion, in several transitions associated with
intermediate annealing to restore the plasticity of the work-
piece material. In the second case, non-monotonic processes
of plastic shaping can be used with high efficiency, which
is also connected with the formulation and solution of new
problems in the theory of plasticity [1—4].

However, the effect of an increase in the plasticity of a
metal by non-monotonic plastic deformation has not found
wide application in engineering because of the insufficient
accuracy in calculating the stress-strain state and the mag-
nitude of the used ductile plastic resource. Therefore, in
order to expand the possibilities of using this effect in indus-
tries, new theoretical developments are needed in the field of
plasticity of metals.

Modern methods of calculation [5—7] make it possible to
determine the stress-strain state of an article at an arbitrary




moment of the technological process at any material point,
but they do not give an answer to the question of what will be
the plasticity of the metal after its pressure treatment under
conditions of complex loading. To predict the mechanical
properties, it is necessary to calculate with sufficient accura-
cy the resource of metal plasticity. Until now, there has been
no generally accepted method for calculating metal damage
during cold non-monotonic plastic deformation. Most of the
criteria are scalar and based on integrating accumulated
plastic deformation along the strain path in view of various
correction factors that take into account the stress state
scheme but disregard the possible anisotropy of damage
accumulation [8—11]. However, experimental data indicate
that the accumulation of defects depends on the direction of
deformation, and when the sign changes, the accumulated
defects can be partially eliminated. For example, a workpiece
that has got fractured under uniform stretching can then be
compressed in the same direction without visible disconti-
nuities. This fact is taken into account by tensor deforma-
tion criteria that determine the anisotropy of accumulated
defects and depend on the curvature of the deformation
trajectory in the deformation space. Therefore, these criteria
are best suited for evaluating metal damage during cold de-
formation with a complex load history.

Thus, the absence of a calculating apparatus to deter-
mine with sufficient accuracy the stress-strain state and the
plasticity resource of a metal under conditions of complex
loading urges to undertake research in this direction.

3. The aim and objectives of the study

The aim of the conducted tests is to develop a calculating
apparatus for determining the stress-strain state in the pro-
cesses of cold volumetric stamping under complex loading.

To achieve this aim, it is necessary to solve the following
objectives:

— to suggest physical equations with the help of which it
is possible to increase the reliability of calculating the stress-
strain state for the processes of non-monotonic loading un-
der conditions of volumetric stress state;

—to determine the influence of physical and mechan-
ical properties, the scheme of the stressed state and the
non-monotonic loading on the plasticity of the metal, using
the existing methods of experimental research;

— to develop a model of the process of damage accumula-
tion in the case of non-monotonic deformation in conditions
of volumetric stress state.

4. Materials and methods for studying the effect of
the non-monotonic loading on the ductility of a metal

4.1. Determination of the components of the strain
rate tensor and the stress deviator components

In the study of the non-stationary process of plastic
deformation, deformation is divided into a number of stages.
After each stage, the workpiece is extracted from the device
and the coordinates of the nodes of the deformed grid are
measured. The grid is applied to the meridian section of the
workpiece. The experimental data can be represented in the
form of tabulated functions (arrays) of the current (Eule-
rian) coordinates z and 7 from the initial (Lagrange) coor-
dinates z, and r, and time (the number of the deformation

stage). Then the workpiece is inserted into the device and
deformed until the next stage. In addition, several workpiec-
es are used with the same initial grid, and they are deformed
to different stages.

The components of the strain rate tensor are determined
from the distortion of the coordinate grid applied to the me-
ridional section by the formulae [12]:
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We obtain the functions of Euler coordinates from the
Lagrangian coordinates z(z, r,, t) and #(z,, r,, ) by approxi-
mating the experimental data by cubic splines.

The yield condition under non-monotonic loading has
the form

3
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where 6, is the intensity of stresses; S, stands for the compo-
nents of the stress deviator; and 0; means the components of
the microstress tensor.

According to the associated law of plastic flow,
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where ¢, stands for the components of the strain rate tensor
and ¢, is the rate of strain.

If the material is stretched to some deformation ¢! with
astress 6,, then €, =¢,,, and we find from (3) that
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The dashes in (4) mean that the corresponding quantities
are defined for e, =¢.
The value of the accumulated plastic deformation is de-
termined by the formula

e, = js dr, (5)
0

where ¢ is the time of deformation.
Since equation (4) is valid for any deformation e,, we will
use it in the following form:

Gn(eu)—%aﬁ(eu)=cu(eu), (6)

where the index p indicates that the corresponding values
are determined by stretching.

If after stretching to e’, the sample is unloaded and
compressed in the direction of the previous stretching, then



due to the Bauschinger effect, the plastic state will happen
at a stress of ¢/ < o). At the same time, o, does not change,
since during the transition from stretching to compression
there was no plastic deformation and since under compression

by =—¢,
2

Sy =-7%0.
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where 6,>0 is the intensity of stresses under compression.
As follows from (3),

3
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The last equation is valid for any deformation e, =e¢,
if o, is selected appropriately. Therefore, we rewrite (7) in
the form

0.e.) -5t (e,)=0,e,) ®

From (4) and (7), we find that
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After integrating (10) by parts, we find that
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where B(ez,eu - e;) can be represented as follows:
B(ez,eu—eZ):f(eZ)(p(eu—eZ). 12)
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therefore, as follows from (11) and (12),
2
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We assume that ¢(0)=1; then from (9), we find that
1-B(e,
/(e,) =72( Jo, e, (13)

As follows from (11), in the process of compression after
stretching,
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(14)

From (8) with allowance for (12) and (13), we find that

o,(e)-0.(c)

<P(eu —eu)= (1—3(6’”))0”(62).

Taking into account (2), (3) and (11), we obtain the
equation for calculating the deviator components of the
stresses in the form

(15)
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where Gu(eug is the flow curve; e, is the degree of deformation;
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compression G, ,(e,) after stretching the sample to the accu-
mulated deformation e, by the stress o,(e,) to the latter (a
parameter characterizing the Bauschinger effect); o(e,—e,,)
is the function that characterizes the hereditary influence of
the loading history.

is the ratio of the relative yield stress to the

4.2. Determination of the material characteristics
6,(c,), B(e,), and o(e, —c!)

To determine the components of the stress deviator ac-
cording to (16), it is necessary to determine experimentally
the three characteristics of the material — ¢,(e,), B(e,), and
dle, —e”).

( The %unctions o,(e,), B(e,) and q)(eu —62) can be deter-
mined under non-monotonic loading under conditions of a
linear stress state [15, 16].

The dependences o,(e,), B(e,) and q)(eu -’ ) for steel 10
are determined by the method described in [16]. To do this, we
use standard samples, which in the first stage we stretch to the
residual deformations 0.02, 0.03, and 0.062. Then, from the
deformed samples, we cut short cylindrical specimens, which
are further deposited, and we construct the corresponding
stretching diagrams (Fig. 1). The parameter B, which charac-
terizes the Bauschinger effect, is determined by the formula

p=—02_, (17)
)
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where o, is the conditional yield point with a plastic defor-
mation tolerance of 0.002 when the sample is compressed
after it has been stretched to a deformation es, which corre-
sponds to the stress o, (ef).

Fig. 1 shows the tensile (compression) of the diagram for
steel 10, and Fig. 2 shows experimental dependences for the
Bauschinger parameter B(e,).

The results of the tests show that the parameter B
depends strongly on the accumulated deformation e, at
¢,20.05, and at ¢,>0.05 this parameter remains constant for
most metals and takes a certain value B, [16]. For steel 10,
B,=0.34 (Fig. 2).

To approximate the dependence of B on e
following formula [17]:

we used the

w



B:Bm+(1—[.’)m)exp(c~eu).
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Fig. 1. The stretch and compression diagram (steel 10)
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Fig. 2. The dependence of the parameter 3 on e,

Using the method of least squares, for a constant ¢, we
obtain the following values: c=—62 for steel 10 and ¢=—50
for aluminum AD-1.

The function ¢, which allows taking into account the
hereditary influence of the history of deformation on a giv-
en state of the material during plastic deformation, is also
determined from the results of the study of cylindrical spec-
imens for tension and subsequent compression. In this case,
the value is determined by formula (15) [15, 16]:

o,(e)-lo.(e)
o, (c)(1-B(c)
where € is the accumulated deformation at reaching which
there is an unloading or break of the deformation trajectory;
c,(e,) is the stress under monotonic stretching; o,(e,) is
the stress at compressing the sample before deformation e,,
previously stretched to e by the stress o, (eg); B(eg) is the
value of the Bauschinger parameter at e, =e.

The experimental values of ¢, determined by formu-
la (19), are approximated in accordance with recommenda-
tions of [16] by the dependence

o(e,—eb)= (19)

¢(eu —eS): 0, +(1—¢0)exp(c1(eu —eg)CZ ),

where @, is the asymptotic value of @, which was determined
experimentally (for steel 10 — ¢,=0.19).

The coefficients ¢, and ¢, are determined by the meth-
od of least squares, and we obtain the following values: for
steel 10, ¢,=—22.3 and ¢,=0.806.

The experimental values ¢(eu —eg) and the approximat-
ing curves are shown in Fig. 3.
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Fig. 3. The dependence of the function ¢ on ¢, —e2

The function ¢ is the main feature of the anisotropic
hardening model (16). This function allows taking into
account the hereditary influence of the loading history
on the current state of the material during its plastic de-
formation.

4. 3. Evaluation of deformability of workpieces under
non-monotonic loading

In most cases, the processing of metals by pressure is ac-
companied by a non-monotonic plastic deformation of met-
als. The criteria of deformability based on the scalar model
of damage accumulation processes [18-20] do not allow
obtaining a reliable estimate of plasticity in such processes.
As a measure of plasticity under non-monotonic loading, a
boundary deformation is accepted, which is determined by
the formula

ty
e, = [¢,dx, (20)

0
where £, is the intensity of the deformation rates, and ¢, is
the time of deformation before destruction.

In [21], to evaluate the ductility of metals under
non-monotonic loading, it is proposed to use the damage
tensor the components of which are determined as follows:
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where m=— s the stiffness index of the stressed state;
c

u

1 . . .
o= gcijSij is the average stress, i is the Lode-Nadai param-
t
eter; e, = Jéudt is the degree of deformation; ¢ is the time of
0

deformation from the moment of the onset of plastic defor-
mation to the deformed state under consideration.

The components of the directing strain tensor of the de-
formations B; are equal to

2de;

L= =2 22
Y N3 de, (22)




The function F(e,, m, W) is a characteristic of the materi-
al. The destruction condition proposed in [21] has the form

v~ 1. (23)

With the use of failure condition (23), solutions of the two-
stage, cyclic and complex loading problems have been obtained
[22], which confirms the reliability of the tensor model.

The following model is proposed for describing the pro-
cess of damage accumulation in the case of non-monotonic
plastic deformation. Since the components of the directing
tensor are determined by formula (22), then using the phys-
ical equations of the theory of plastic flow

_§d€u S, (24)

de.. =
g 2 Gu y

we find that

de;, |3 3,
or
35,
B;‘j = 5(57]’ (26)

where §; stands for the components of the stress deviator;
o, is the stress intensity.
We represent the tensor o, in the form

6,=S,+60,, (27)
where 6= %(51761.]. is the average stress.

In addition, we use the well-known relations

= (28)

S 48,+5,-0,

262 = (8, = S,)" +(S, =S, ) +(8,-5,)". (29)

After solving the system of (28) and (29), we find that

S, 1 u-3
L=x— ,
o, 3 Jul+3
S, _ 1 2,
o, 3 Jui+3
3
Sy 1B t3 (30)
o, 3 Jul+3

It follows from (22) and (30) that the principal compo-
nents of the tensor B, are equal to

B =7 1 pn,-3
=F—= )
NG u2+3
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B =% 1 u,+3
=F—F .
’ x/éﬂmfﬁ?;

It is assumed that, under non-monotonic loading, fracture
occurs when some function of the invariants of the tensor
reaches a certain value. The first invariant of this tensor is zero,
since due to incompressibility of the material, B,+f,+B,=0.
Without taking into account the influence of the third invari-
ant, the failure condition can be written in the form

(31

(URREATESE (32)

To determine the form of the function F(e,, m, 1), which
is included in (21), we consider simple loading, for which
m, and , remain constant; then [21]

ij?

v, =B, [ Fle,nm,)de, =p,0(e,nu.) (33)
0
where
o(e,mu,)=[Fle,mu,)de,. (34)
0

As BI+PBi+PB2=1, it follows from (32) that at failure if
e,~¢, 9(e, M, i)=1.

Besides,

¢(0,m, u,)=0. (35)

Satisfying these conditions, let us assume that [21]
(36)

where e (M, b,) is the surface of boundary deformations;
a is a constant the value of which depends on the mechan-
ical characteristics of the metal. The value of a is taken
equal to a=0.48.

Satisfying relations (21), (34), and (36), we assume that
in the general case [21]
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Analogous expressions can be obtained for y, and .,
which enter into the destruction condition (32).

(37)

5. Results of studying the radial extrusion process

followed by sagging

A schematic diagram of the process of radial extrusion of
cylindrical specimens followed by sagging is shown in Fig. 4.

The components of the stress deviator for this process
are calculated using formula (16). The hydrostatic stress
o is determined by integrating the differential equilibrium
equations, which in the case of axisymmetric deformation
have the form

o6, dt, O,—0C,

Nl B =0, 38
ar oz " r 38)
A A (39)
or 0z 7



a b c
Fig. 4. A schematic diagram of the process of radial
extrusion with subsequent sagging: @ — initial position;
b — radial extrusion; ¢ — contour sag of the thickening
obtained after radial extrusion

We also use the integral equation of equilibrium

R
P=2n[o.rdr, (40)
0
where R is the radius of the deformed body; P is the force

that is determined when the body under investigation is
deformed.

R —
c,:(c,_)A+J(a;—:+M)dr,

r

(41)

where (), is the radial stress at point A, which is on the

outer surface of the workpiece.
The axial stress is
6.=5.+6,-S,. (42)

After substituting (42) and (41) for (40), we find that

1 R )
), = P-2n|(S,-S,+S)rdr |, (43)
(0), =g P25, -5,
where
R S-S
. _[(E);_;+'T¢Jdr. (44)

To determine the stresses at other points of the radius, we
use equation (41) in the form

(45)

We calculate the stresses 6, and o, along the radius by
the formulae

(04),=(0,),=(5), #(5.) -

i

(46)

Similarly, we calculate the stress along the other parallel
radii. The value of the axial stress 6, along the vertical lines
is determined by integrating the second differential equilib-
rium equation (39)

ot 1
(.).,=(c.),— | (a—;+i)dz.

(47)
.

The results of the stress and strain calculations are used
to construct the deformation pathways n(e,) and p,(e,) and
also for calculating B, by formulae (31).

6. Discussion of the results of the study of the radial
extrusion process followed by sagging

Fig. 5 shows the obtained dependences of the normal
stresses ©,, 6, and G, on the degree of deformation e, at
points that, before the deformation, had occupied the posi-
tions indicated in the same Figure (z=0).

From the analysis of the dependences shown in Fig. 5,
it follows that in the transition from radial extrusion to the
contour sag, the nature of these dependences changes sharp-
ly. If the stresses are calculated using the physical equations
of the flow theory, such a change is practically not observed.
Moreover, the non-monotonic loading affects the character
of the curves that describe the dependence of stresses on
the degree of deformation, the closer the point under study
to the surface of the workpiece. Therefore, when studying
the influence of the stress field and the regularities of stress
variation on the deformability and other characteristics of
the deformed metal, it is necessary to take into account the
anisotropy of the mechanical characteristics of the metal
under non-monotonic plastic deformation.

The surface of the limiting deformations for steel 10 is
approximated by the following dependence [14]:

e,(M, 1;)=0.68exp(0.43,~0.71n).

The surfaces of the ultimate deformations of steel 10 and
the strain paths of the material particles shown in Fig. 5 are
shown in Fig. 6.

Calculation of the used plasticity resource y for three
points on the horizontal axis of symmetry of a cylindrical
specimen with radial extrusion with a contour sag can be
done by the formula

Y=V (48)

The results of the calculations are given in Table 1 for the
flange diameter d , =44 mm at d,=20 mm, depending on the

max

rounding radius of the matrix.

Table 1
The results of calculating the used resource of plasticity y

p/d,=0.05 p/d=0.15 p/d,=0.25

Point | Point | Point | Point | Point | Point | Point | Point | Point
3 5 7 3 5 7 3 5 7

Vi Y, Vs Vi v, Vs Vi Y, Vs

0.58 | 0.84 | 098 | 0.49 | 0.68 | 0.94 | 0.46 | 0.54 | 0.86
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Fig. 5. The dependences of the normal stresses G, G,, and o,
on the degree of deformation e, at points 1—7: a—G,on e,
b-c,one,;c-c,0ne,

From the analysis of the results given in Table 1, it fol-
lows that an increase in the rounding radius p from 1 mm to
3 mm practically does not affect the value of the used plas-
ticity resource at a hazardous point, and only at p=5 mm, y
decreases to 0.86.

However, if the radius of the matrix rounding is less than
3mm (p<3 mm), the plasticity resource at the dangerous
point is practically exhausted, and only at p=5 mm, a flange
with a diameter of d_,_ =44 mm (d,=20 mm) can be obtained
without failure. In the experimental tests, a flare at the
flange equator arises with a flange diameter of d_, =48 mm
for a value of p/d,=0.25 (p=4.26 mm). The results of the
calculations coincide satisfactorily with the results obtained
in [1-4, 23].

The main advantage of this research is the rather high accu-
racy of determining the value of the used plasticity resource .
The disadvantage is the great complexity of calculations.

This study is useful and practically indispensable in as-
sessing the ductility of a metal deformed under conditions of
non-monotonic loading. The proposed calculation apparatus

can be used to evaluate the ductility of a metal in the most
general cases of complex and non-monotonic loading.
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Fig. 6. The surface of the limiting deformations e,(n, 1)
for steel 10 and the deformation paths of
the material particles at points 3, 5, and 7:
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This work is a continuation of research in the field of
ductility of deformed metals. In the future, these findings
will be improved by refining the methods for calculating the
stress-strain state and the methods of experimental studies,
quantifying the damage accumulation rate, using the theory
of dislocations, and taking account of structural transforma-
tions in the deformed metal.

7. Conclusion

1. The plasticity of metals under conditions of complex
loading is estimated by creating a calculation apparatus that
allows the components of the stress tensor to be calculated in
the technological problems of metal working with pressure.

2. A calculation apparatus has been created that allows
estimating the value of the used plasticity resource in the
processes of metal working with pressure accompanied by
non-monotonic loading, on the basis of analyzing the stressed
state and the experimental determination of the mechanical
characteristics of the metals under consideration.
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