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1. Introduction

Modern advances in technology require improving avail-
able and developing and implementing new methods and 
procedures that make it possible to preserve material, labor, 
energy and environmental resources. In the metalworking 
industry, resource-saving is ensured by introducing a wide 
range of methods of cold volumetric stamping, which help in-
crease the mechanical properties of the deformed metal and 
obtain products with great precision and the necessary tech-
nological properties. There are possibilities to form products 
with work-conducive macrostructures, strain hardening and 
the permissible level of deformed metal damage, which often 
allows replacing expensive grades of steels with cheaper ones 
without changing the service properties of the products.

However, the methods of theoretical solution of volumet-
ric problems, especially in the presence of non-monotonic 
loading, have not been improved enough for practical use in 
the development and optimization of technologies. To meet 
the more stringent requirements for the accuracy of determin-
ing the stress-strain state, it is necessary to have information 
about the history of the process of plastic deformation at each 
point of the metal. This will allow predicting the mechanical 
properties of and the level of damage to the deformed metal.

The presence of non-monotonic loading considerably 
complicates the calculations of stresses and limiting de-
formations. Therefore, the development of more advanced 
methods for calculating the stress-strain state and esti-

mating the deformability of workpieces for cold volume 
stamping under conditions of non-monotonic loading is an 
essential scientific and technical task.

2. Literature review and problem statement

In the field of metal forming, there are many unresolved 
problems associated with the evaluation of the ultimate 
shaping of workpieces in non-monotonic plastic deformation 
processes. Workpieces of the desired accuracy in shape and 
size can be obtained in one transition or, due to the plastici-
ty resource depletion, in several transitions associated with 
intermediate annealing to restore the plasticity of the work-
piece material. In the second case, non-monotonic processes 
of plastic shaping can be used with high efficiency, which 
is also connected with the formulation and solution of new 
problems in the theory of plasticity [1–4].

However, the effect of an increase in the plasticity of a 
metal by non-monotonic plastic deformation has not found 
wide application in engineering because of the insufficient 
accuracy in calculating the stress-strain state and the mag-
nitude of the used ductile plastic resource. Therefore, in 
order to expand the possibilities of using this effect in indus-
tries, new theoretical developments are needed in the field of 
plasticity of metals.

Modern methods of calculation [5–7] make it possible to 
determine the stress-strain state of an article at an arbitrary 
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moment of the technological process at any material point, 
but they do not give an answer to the question of what will be 
the plasticity of the metal after its pressure treatment under 
conditions of complex loading. To predict the mechanical 
properties, it is necessary to calculate with sufficient accura-
cy the resource of metal plasticity. Until now, there has been 
no generally accepted method for calculating metal damage 
during cold non-monotonic plastic deformation. Most of the 
criteria are scalar and based on integrating accumulated 
plastic deformation along the strain path in view of various 
correction factors that take into account the stress state 
scheme but disregard the possible anisotropy of damage 
accumulation [8–11]. However, experimental data indicate 
that the accumulation of defects depends on the direction of 
deformation, and when the sign changes, the accumulated 
defects can be partially eliminated. For example, a workpiece 
that has got fractured under uniform stretching can then be 
compressed in the same direction without visible disconti-
nuities. This fact is taken into account by tensor deforma-
tion criteria that determine the anisotropy of accumulated 
defects and depend on the curvature of the deformation 
trajectory in the deformation space. Therefore, these criteria 
are best suited for evaluating metal damage during cold de-
formation with a complex load history.

Thus, the absence of a calculating apparatus to deter-
mine with sufficient accuracy the stress-strain state and the 
plasticity resource of a metal under conditions of complex 
loading urges to undertake research in this direction.

3. The aim and objectives of the study

The aim of the conducted tests is to develop a calculating 
apparatus for determining the stress-strain state in the pro-
cesses of cold volumetric stamping under complex loading.

To achieve this aim, it is necessary to solve the following 
objectives:

– to suggest physical equations with the help of which it 
is possible to increase the reliability of calculating the stress-
strain state for the processes of non-monotonic loading un-
der conditions of volumetric stress state;

– to determine the influence of physical and mechan-
ical properties, the scheme of the stressed state and the 
non-monotonic loading on the plasticity of the metal, using 
the existing methods of experimental research;

– to develop a model of the process of damage accumula-
tion in the case of non-monotonic deformation in conditions 
of volumetric stress state.

4. Materials and methods for studying the effect of  
the non-monotonic loading on the ductility of a metal

4. 1. Determination of the components of the strain 
rate tensor and the stress deviator components

In the study of the non-stationary process of plastic 
deformation, deformation is divided into a number of stages. 
After each stage, the workpiece is extracted from the device 
and the coordinates of the nodes of the deformed grid are 
measured. The grid is applied to the meridian section of the 
workpiece. The experimental data can be represented in the 
form of tabulated functions (arrays) of the current (Eule-
rian) coordinates z and r from the initial (Lagrange) coor-
dinates z0 and r0 and time (the number of the deformation 

stage). Then the workpiece is inserted into the device and 
deformed until the next stage. In addition, several workpiec-
es are used with the same initial grid, and they are deformed 
to different stages.

The components of the strain rate tensor are determined 
from the distortion of the coordinate grid applied to the me-
ridional section by the formulae [12]:
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We obtain the functions of Euler coordinates from the 
Lagrangian coordinates z(z0, r0, t) and r(z0, r0, t) by approxi-
mating the experimental data by cubic splines.

The yield condition under non-monotonic loading has 
the form

( ) ( )s = ⋅ - a ⋅ - a2 3
,

2u ij ij ij ijS S   (2)

where su is the intensity of stresses; Sij stands for the compo-
nents of the stress deviator; and aij means the components of 
the microstress tensor.

According to the associated law of plastic flow,

( )e
= ⋅ ⋅ - a

s
�

� 3
,

2
u

ij ij ij
u

e S   (3)

where �ije  stands for the components of the strain rate tensor 
and e� u  is the rate of strain.

If the material is stretched to some deformation 0
ue  with 

a stress sр, then e =� �
11,u e  and we find from (3) that

= ⋅s11

2
,
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.
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The dashes in (4) mean that the corresponding quantities 
are defined for = 0.u ue e

The value of the accumulated plastic deformation is de-
termined by the formula

= e ⋅ t∫ �
0

d ,
t

u ue     (5)

where t is the time of deformation.
Since equation (4) is valid for any deformation eu, we will 

use it in the following form:

( ) ( ) ( )s - ⋅a = s11

3
,

2
p

p u u u ue e e    (6)

where the index p indicates that the corresponding values 
are determined by stretching.

If after stretching to 0,ue  the sample is unloaded and 
compressed in the direction of the previous stretching, then 
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due to the Bauschinger effect, the plastic state will happen 
at a stress of s < s¢ ¢ .c p  At the same time, a11 does not change, 
since during the transition from stretching to compression 
there was no plastic deformation and since under compression

= -e��
11 ,ue  

= - ⋅s11

2
,

3 cS

where sс>0 is the intensity of stresses under compression.
As follows from (3),

11

3
.

2c us + ⋅a =s¢ ¢ ¢    (7)

The last equation is valid for any deformation = 0,u ue e  
if a11 is selected appropriately. Therefore, we rewrite (7) in  
the form
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In studies [13, 14],

( ) ( )∗ ∗ ∗ ∗a = -
e∫
�
�

0

, d .
ue

ij
ij u u u u u

u

e
b e e e e e    (10)

After integrating (10) by parts, we find that
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where ( )∗ ∗-,u u uB e e e  can be represented as follows:
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We assume that j(0)=1; then from (9), we find that
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As follows from (11), in the process of compression after 
stretching, 
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From (8) with allowance for (12) and (13), we find that
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Taking into account (2), (3) and (11), we obtain the 
equation for calculating the deviator components of the 
stresses in the form 
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where su(eu) is the flow curve; eu is the degree of deformation;  
 ( ) ( )

( )
s

β =
s

0.2 u
u

u u

e
e

e
 is the ratio of the relative yield stress to the 

compression s0.2(eu) after stretching the sample to the accu-
mulated deformation eu by the stress su(eu) to the latter (a 
parameter characterizing the Bauschinger effect); j(eu–eu0) 
is the function that characterizes the hereditary influence of 
the loading history.

4. 2. Determination of the material characteristics 
sр(еu), β(еu), and ( )φ - 0

u ue e
To determine the components of the stress deviator ac-

cording to (16), it is necessary to determine experimentally 
the three characteristics of the material – sр(еu), β(еu), and 

( )φ - 0 .u ue e
The functions su(еu), β(еu) and ( )φ - 0

u ue e  can be deter-
mined under non-monotonic loading under conditions of a 
linear stress state [15, 16].

The dependences su(еu), β(еu) and ( )φ - 0
u ue e  for steel 10 

are determined by the method described in [16]. To do this, we 
use standard samples, which in the first stage we stretch to the 
residual deformations 0.02, 0.03, and 0.062. Then, from the 
deformed samples, we cut short cylindrical specimens, which 
are further deposited, and we construct the corresponding 
stretching diagrams (Fig. 1). The parameter β, which charac-
terizes the Bauschinger effect, is determined by the formula

( )
s

β =
s

0.2
0

,
u ue

    (17)

where s0.2 is the conditional yield point with a plastic defor-
mation tolerance of 0.002 when the sample is compressed 
after it has been stretched to a deformation 0,ue  which corre-
sponds to the stress ( )s 0 .u ue

Fig. 1 shows the tensile (compression) of the diagram for 
steel 10, and Fig. 2 shows experimental dependences for the 
Bauschinger parameter β(еu).

The results of the tests show that the parameter β 
depends strongly on the accumulated deformation еu at 
еu£0.05, and at еu>0.05 this parameter remains constant for 
most metals and takes a certain value βm [16]. For steel 10, 
βm=0.34 (Fig. 2).

To approximate the dependence of β on eu, we used the 
following formula [17]:
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The function F(eu, h, ms) is a characteristic of the materi-
al. The destruction condition proposed in [21] has the form

yijyij=1.    (23)

With the use of failure condition (23), solutions of the two-
stage, cyclic and complex loading problems have been obtained 
[22], which confirms the reliability of the tensor model.

The following model is proposed for describing the pro-
cess of damage accumulation in the case of non-monotonic 
plastic deformation. Since the components of the directing 
tensor are determined by formula (22), then using the phys-
ical equations of the theory of plastic flow
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where Sij stands for the components of the stress deviator;  
su is the stress intensity.

We represent the tensor sij in the form

sij=Sij+sdij,    (27)

where s = s d
1
3 ij ij  is the average stress.

In addition, we use the well-known relations
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After solving the system of (28) and (29), we find that
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It follows from (22) and (30) that the principal compo-
nents of the tensor βij are equal to 
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It is assumed that, under non-monotonic loading, fracture 
occurs when some function of the invariants of the tensor yij 
reaches a certain value. The first invariant of this tensor is zero, 
since due to incompressibility of the material, β1+β2+β3=0. 
Without taking into account the influence of the third invari-
ant, the failure condition can be written in the form

y + y + y =2 2 2
1 2 3 1.     (32)

To determine the form of the function F(eu, h, ms), which 
is included in (21), we consider simple loading, for which βij, 
h, and ms remain constant; then [21]
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As β + β + β =2 2 2
1 2 3 1,  it follows from (32) that at failure if 

eu=ep, j(ep, h, ms)=1. 
Besides,

j(0, h, ms)=0.     (35)

Satisfying these conditions, let us assume that [21]
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p p
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   (36)

where ер(h, ms) is the surface of boundary deformations;  
a is a constant the value of which depends on the mechan-
ical characteristics of the metal. The value of a is taken 
equal to a=0.48.

Satisfying relations (21), (34), and (36), we assume that 
in the general case [21]

( ) ( )s s

 
y = - + β h m h m ∫1 1
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d
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u u

p p

e e
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e e
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Analogous expressions can be obtained for y2 and y3, 
which enter into the destruction condition (32).

5. Results of studying the radial extrusion process 
followed by sagging

A schematic diagram of the process of radial extrusion of 
cylindrical specimens followed by sagging is shown in Fig. 4.

The components of the stress deviator for this process 
are calculated using formula (16). The hydrostatic stress 
s is determined by integrating the differential equilibrium 
equations, which in the case of axisymmetric deformation 
have the form

φs - s∂t∂s
+ + =

∂ ∂
0,rrzr

r z r    
(38)

∂t ∂s t
+ + =

∂ ∂
0.rz z rz

r z r     
(39)
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Fig.	4.	A	schematic	diagram	of	the	process	of	radial	
extrusion	with	subsequent	sagging: a	–	initial	position;		
b	–	radial	extrusion;	c	–	contour	sag	of	the	thickening	

obtained	after	radial	extrusion

We also use the integral equation of equilibrium 

Ρ = p s∫
0

2 d ,
R

zr r    (40)

where R is the radius of the deformed body; P is the force 
that is determined when the body under investigation is 
deformed.

( ) φ- ∂t
s = s + + ∂ ∫ d ,

R
rrz

r r A
r

S S
r

r r
    (41)

where (sr)А is the radial stress at point A, which is on the 
outer surface of the workpiece.

The axial stress is

s = + s - .z z r rS S     (42)

After substituting (42) and (41) for (40), we find that
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To determine the stresses at other points of the radius, we 
use equation (41) in the form 
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φ
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We calculate the stresses sz and sj along the radius by 
the formulae

( ) ( ) ( ) ( )s = s - + ,z r r zi ii i
S S

( ) ( ) ( ) ( )φ φs = s - + .r ri ii i
S S    (46)

Similarly, we calculate the stress along the other parallel 
radii. The value of the axial stress sz along the vertical lines 
is determined by integrating the second differential equilib-
rium equation (39)
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+

+

∂t t s = s - +  ∂∫
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1
d .

i

i

z

rz rz
z zi i

z

z
r r
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The results of the stress and strain calculations are used 
to construct the deformation pathways h(еu) and ms(еu) and 
also for calculating βi by formulae (31).

6. Discussion of the results of the study of the radial 
extrusion process followed by sagging

Fig. 5 shows the obtained dependences of the normal 
stresses sz, sr, and sj on the degree of deformation eu at 
points that, before the deformation, had occupied the posi-
tions indicated in the same Figure (z=0).

From the analysis of the dependences shown in Fig. 5, 
it follows that in the transition from radial extrusion to the 
contour sag, the nature of these dependences changes sharp-
ly. If the stresses are calculated using the physical equations 
of the flow theory, such a change is practically not observed. 
Moreover, the non-monotonic loading affects the character 
of the curves that describe the dependence of stresses on 
the degree of deformation, the closer the point under study 
to the surface of the workpiece. Therefore, when studying 
the influence of the stress field and the regularities of stress 
variation on the deformability and other characteristics of 
the deformed metal, it is necessary to take into account the 
anisotropy of the mechanical characteristics of the metal 
under non-monotonic plastic deformation.

The surface of the limiting deformations for steel 10 is 
approximated by the following dependence [14]:

ер(h, ms)=0.68ехр(0.43ms-0.71h).

The surfaces of the ultimate deformations of steel 10 and 
the strain paths of the material particles shown in Fig. 5 are 
shown in Fig. 6.

Calculation of the used plasticity resource y for three 
points on the horizontal axis of symmetry of a cylindrical 
specimen with radial extrusion with a contour sag can be 
done by the formula 

y = y + y + y2 2 2
1 2 3 .    (48)

The results of the calculations are given in Table 1 for the 
flange diameter dmax=44 mm at d0=20 mm, depending on the 
rounding radius of the matrix.

Table	1

The	results	of	calculating	the	used	resource	of	plasticity	y

r/d0=0.05 r/d0=0.15 r/d0=0.25

Point 
3

Point 
5

Point 
7

Point 
3

Point 
5

Point 
7

Point 
3

Point 
5

Point 
7

y1 y2 y3 y1 y2 y3 y1 y2 y3

0.58 0.84 0.98 0.49 0.68 0.94 0.46 0.54 0.86
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Fig.	5.	The	dependences	of	the	normal	stresses	sz,	sr,	and	sj	
on	the	degree	of	deformation	eu	at	points	1–7:	а	-	sz	on	eu;	

b	-	sr	on	eu;	c	-	sj	on	eu

From the analysis of the results given in Table 1, it fol-
lows that an increase in the rounding radius r from 1 mm to 
3 mm practically does not affect the value of the used plas-
ticity resource at a hazardous point, and only at r=5 mm, y 
decreases to 0.86.

However, if the radius of the matrix rounding is less than 
3 mm (r<3 mm), the plasticity resource at the dangerous 
point is practically exhausted, and only at r=5 mm, a flange 
with a diameter of dmax=44 mm (d0=20 mm) can be obtained 
without failure. In the experimental tests, a flare at the 
flange equator arises with a flange diameter of dmax=48 mm 
for a value of r/d0=0.25 (r=4.26 mm). The results of the 
calculations coincide satisfactorily with the results obtained 
in [1–4, 23].

The main advantage of this research is the rather high accu-
racy of determining the value of the used plasticity resource y. 
The disadvantage is the great complexity of calculations.

This study is useful and practically indispensable in as-
sessing the ductility of a metal deformed under conditions of 
non-monotonic loading. The proposed calculation apparatus 

can be used to evaluate the ductility of a metal in the most 
general cases of complex and non-monotonic loading.

 

1 

2 

3 

4 

5 

-2 -1 0 1 2 
η 

1 

-1 

µσ 

3 

5 

7 

eu 
 

1 

2 

3 

4 

5 

-2 -1 0 1 2 
η 

1 

-1 

µσ 

3 

5 
7 

eu 

 
 

 

1 

2 

3 

4 

5 

-2 -1 0 1 2 
η 

1 

-1 

µσ 

3 

5 

7 

eu 

 
 

                       а                                                 b

 

1 

2 

3 

4 

5 

-2 -1 0 1 2 
η 

1 

-1 

µσ 

3 

5 

7 

eu 
 

1 

2 

3 

4 

5 

-2 -1 0 1 2 
η 

1 

-1 

µσ 

3 

5 
7 

eu 

 
 

 

1 

2 

3 

4 

5 

-2 -1 0 1 2 
η 

1 

-1 

µσ 

3 

5 

7 

eu 

 
 

c

Fig.	6.	The	surface	of	the	limiting	deformations	ер(h,	ms)		
for	steel	10	and	the	deformation	paths	of		
the	material	particles	at	points	3,	5,	and	7:

а	-	
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=
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This work is a continuation of research in the field of 
ductility of deformed metals. In the future, these findings 
will be improved by refining the methods for calculating the 
stress-strain state and the methods of experimental studies, 
quantifying the damage accumulation rate, using the theory 
of dislocations, and taking account of structural transforma-
tions in the deformed metal.

7. Conclusion 

1. The plasticity of metals under conditions of complex 
loading is estimated by creating a calculation apparatus that 
allows the components of the stress tensor to be calculated in 
the technological problems of metal working with pressure.

2. A calculation apparatus has been created that allows 
estimating the value of the used plasticity resource in the 
processes of metal working with pressure accompanied by 
non-monotonic loading, on the basis of analyzing the stressed 
state and the experimental determination of the mechanical 
characteristics of the metals under consideration.
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